Subscribe to RSS - News feed
Updated: 4 hours 27 min ago

Accelerator Report: Keeping cool and adapting to challenges

Fri, 03/05/2024 - 11:41
Accelerator Report: Keeping cool and adapting to challenges

On 29 April, the LHC team received the green light for the final step in the intensity ramp-up and added the last 141 bunches to obtain a full machine with 2352 bunches in each beam.

The 2024 beam commissioning and subsequent intensity ramp-up to about 1900 bunches per beam went very smoothly and, as mentioned in my last report, we were well ahead of schedule. Today, we are still on schedule, but some of the margin has been consumed by two main challenges that were encountered in the last two weeks, which have led to some changes to the filling scheme.

The first challenge occurred on 17 April, when the machine was filled with 1791 bunches per beam. Abnormal beam losses were observed in the collimation region (Point 7) during the final stage of the “squeeze process”, where the beam size in the experiments is reduced to increase the number of collisions.

The collimation system is designed to absorb particles that stray from their trajectory and could hit sensitive components of the accelerator, such as the superconducting magnets, and interfere with their operation. To avoid this happening, Point 7 is equipped with primary and secondary collimators.

The primary collimators, which are situated close to the beam, intercept the deviating beam particles (also called the primary particles), absorb part of their energy and redirect them to the secondary collimators. The secondary collimators, which are further away from the beam, then absorb these particles.

On 17 April, a breaking of the collimation hierarchy was observed: a secondary collimator started playing the role of a primary collimator for certain particles. This can damage the secondary collimator, as it is not designed to intercept the primary particles. Many studies are ongoing to understand the issue, especially as this effect is not observed when the machine is filled with only a few bunches, which is the case during the beam commissioning, when the LHC team validates the collimation hierarchy. In the meantime, the “squeeze” has been limited, sacrificing a few percentage points of luminosity, but avoiding potential damage to the machine parts.

The second challenge arose on 22 April, when the 1.9-Kelvin refrigeration unit A (QUARC A) at Point 8 stopped working due to a faulty cold compressor. Consequently, the cryogenics team switched to the spare unit B (QUARC B), which was in cold standby. Unfortunately, the QUARC B is less efficient, resulting in a loss of cooling capacity. A good cooling capacity is needed in sector 7-8 to extract the heat load induced by the electron cloud. Therefore, the number of bunches per beam was reduced from 1983 to 1215 the day after. On 24 April, the cryogenics team was ready to switch back to QUARC A and the cooling capacity was recovered by 25 April. A first fill with 1419 bunches was put in collision, successfully followed by a 1959-bunch fill during the night.

However, to reduce the heat load and leave the possibility open to further increase the total number of bunches, the injectors switched from bunch trains containing three batches of 48 bunches each to bunch trains with three batches of 36 bunches each. With this bunch pattern, the number of gaps in the bunch trains increases and the electron cloud production in the LHC decreases, hence the heat load to the cryogenics system.

LHC Page 1 on 30 April, with two successful fills with 2352 bunches per beam each. On the left, we see beams 1 and 2 in blue and red respectively. On the right, the luminosity of the four main LHC experiments. (Image: CERN)

On 26 April, the next intensity step was made, increasing the number of bunches from 1959 to 2211 bunches per beam. Over the following weekend, these 2211 bunches per beam, together with an excellent machine availability of 70% and beams in collision close to 58% of the time, resulted in an accumulation of 2.5 fb-1, which corresponds to a very encouraging 0.83 fb-1 per 24 hours.

On 29 April, after careful analysis, the cryogenics team concluded that there was indeed margin in the cryogenic cooling system to perform the final intensity step and increase to 2352 bunches per beam, still using the three batches of 36 bunches from the SPS.

Collisions with 2352 bunches per beam and a limited “squeeze” of the beam will be the default running mode for the time being, until the collimation hierarchy issue is understood and resolved. Despite this, the luminosity production is very good and looks promising for the remainder of the year.

anschaef Fri, 05/03/2024 - 10:41 Byline Rende Steerenberg Publication Date Fri, 05/03/2024 - 10:37

CERN and ENEA plan to develop liquid-metal technologies for particle accelerators

Tue, 30/04/2024 - 14:17
CERN and ENEA plan to develop liquid-metal technologies for particle accelerators

CERN has established a partnership with ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development, to develop new beam-intercepting devices using liquid-lead technologies.

This development could enhance the performance and reliability of particle accelerators worldwide and is essential for proposed future projects at CERN, such as the Future Circular Collider (FCC) and Muon Collider. FCC-ee collisions of intense electron and positron beams would produce a high-energy photon beam carrying up to 500 kW of power on each side of the interaction regions; liquid lead is an excellent and compact candidate to safely absorb this photon beam. The Muon Collider would need proton beams to interact with a target to supply muons. If the target was solid graphite, proton beams would be limited to 2 MW of power; a liquid-lead target, however, would be able to withstand more powerful proton beams and hence produce more muons. Looking at the intensity frontier, liquid-lead targets could also be applied to the production of neutrons and feebly interacting particles.

“By pooling our resources and expertise, we are confident that we can accelerate the development of liquid-metal-based beam-intercepting devices”, explains Marco Calviani, Head of the Target, Collimators and Dumps section at CERN. “This collaboration will unlock an enabling technology for new possibilities in fundamental research, applied science and applications for the benefit of society.”

“Together with CERN, we are well positioned to use our know-how of liquid-lead-based technology to push the boundaries of innovation and pave the way for transformative advancements in accelerator technology,” continues Mariano Tarantino, Head of the Nuclear Energy Systems Division at ENEA.

anschaef Tue, 04/30/2024 - 13:17 Byline Kate Kahle Publication Date Tue, 04/30/2024 - 13:14

Enhancing safety: improving seismic risk assessments

Tue, 30/04/2024 - 12:41
Enhancing safety: improving seismic risk assessments

CERN is located in a particularly complex geological setting, which also happens to be prone to earthquakes. Seismic events of a certain magnitude have the potential to inflict substantial damage or lead to equipment failure, which naturally poses a risk to both personnel and assets.

Complex research infrastructures like CERN often boast unique technologies and equipment hidden deep underground. This presents a unique set of challenges, since there are currently no regulations covering either the structural systems or the subterranean infrastructure, resulting in a lack of established procedures for conducting seismic risk assessments. Regarding radiation shielding in particular, the prevailing approach frequently involves using high-density blocks to achieve the required level of shielding, an exceptional solution that is not regulated by European or Swiss norms.

Examples of concrete block configurations at CERN: beam line shielding in the Neutrino Platform trenches (left) and Proton Synchrotron East Area facility (right). (Image: CERN)

To bridge this gap and identify feasible solutions, CERN’s HSE unit and SCE and BE departments have been carrying out dedicated research for the last three years, in collaboration with the Swiss Federal Institute of Technology Lausanne (EPFL), the California Institute of Technology (Caltech), the University of Montpellier and the European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Together, they have performed full-scale seismic tests on a large shaking table at EUCENTRE to observe the dynamic behaviour of stacked concrete blocks. The numerical models were calibrated using the test data, enabling the simulation of the seismic behaviour of real block configurations at CERN. This research provides the basis for a novel methodology for the seismic risk assessment of this kind of structure, which is currently applied as a routine activity in areas such as the PS, SPS and LHC complex. Furthermore, the research has resulted in a clear procedure for calibrating the numerical models, as well as a methodology and risk assessment process that will be applied to future block configurations in new experiments and facilities to be built at CERN.

Shaking table tests were carried out at EUCENTRE in Pavia, Italy. The left image shows geometrical details, with dimensions in mm, of the specimen (middle image). The right image shows the tested accelerograms, which are compatible with the seismic design requirements for several ordinary buildings in Switzerland. (Image: CERN)

The collaboration was recently awarded the “Best Paper Award 2023” by the Engineering Structures journal for the paper entitled “Shaking table tests for seismic stability of stacked concrete blocks used for radiation shielding”.  According to Marco Andreini, senior structural engineer in the HSE-OHS group, “this award recognises the significance and impact of our work, not only for CERN but also for other similar complex infrastructures around the world.”

Looking ahead, it is hoped that this novel approach can be used by other large research infrastructures and beyond.

anschaef Tue, 04/30/2024 - 11:41 Byline HSE unit SCE department Publication Date Thu, 05/02/2024 - 10:00

Probing matter–antimatter asymmetry with AI

Tue, 30/04/2024 - 09:54
Probing matter–antimatter asymmetry with AI The open CMS detector during the second long shutdown of CERN’s accelerator complex. (Image: CERN)

When we look at ourselves in a mirror, we see a virtual twin, identical in every detail except with left and right inverted. In particle physics, a transformation in which charge–parity (CP) symmetry is respected swaps a particle with the mirror image of its antimatter particle, which has opposite properties such as electric charge.

The physical laws that govern nature don’t respect CP symmetry, however. If they did, the Universe would contain equal amounts of matter and antimatter, as it is believed to have done just after the Big Bang. To explain the large imbalance between matter and antimatter seen in the present-day Universe, CP symmetry has to be violated to a great extent. The Standard Model of particle physics can account for some CP violation, but it is not sufficient to explain the present-day matter–antimatter imbalance, prompting researchers to explore CP violation in all its known and unknown manifestations.

One way CP violation can manifest itself is in the “mixing” of electrically neutral mesons such as the strange beauty meson, which is composed of a strange quark and a bottom antiquark. These mesons can travel macroscopic distances in the Large Hadron Collider (LHC) detectors before decaying into lighter particles, and during this journey they can turn into their corresponding antimesons and back.

This phenomenon, called meson mixing, could be different for a meson turning into an antimeson versus an antimeson turning into a meson, generating CP violation. To see if that’s the case, researchers need to count how many mesons or antimesons survive a certain duration before decaying, and then repeat the measurement for a given range of durations. To do so, they have to separate mesons from antimesons, a task called flavour tagging. This task is crucial to pinning down CP violation in meson mixing and in the interference between meson mixing and decay.

At a seminar held recently at CERN, the CMS collaboration at the LHC reported the first evidence of CP violation in the decay of the strange beauty meson into a pair of muons and a pair of electrically charged kaons.

By deploying a new flavour-tagging algorithm on a sample of about 500 000 decays of the strange beauty meson into a pair of muons and a pair of charged kaons, collected during Run 2 of the LHC, the CMS collaboration measured with improved precision the parameter that determines CP violation in the interference between this meson’s mixing and decay. If this parameter is zero, CP symmetry is respected. The new flavour-tagging algorithm is based on a cutting-edge artificial intelligence (AI) technique called a graph neural network, which performs accurate flavour tagging by gathering information from the particles surrounding the strange beauty meson and those being produced alongside it.

The collaboration then combined the result with its previous measurement of the parameter based on data from Run 1 of the LHC. The combined result is different from zero and is consistent with the Standard Model prediction and with previous measurements from CMS and the ATLAS and LHCb experiments.

Notably, the combined result is comparable in precision to the world’s most precise measurement of the parameter, obtained by LHCb, a detector specifically designed to perform measurements of this kind. Moreover, the result has a statistical significance that crosses the conventional “3 sigma” threshold, providing the first evidence of CP violation in the decay of the strange beauty meson into a pair of muons and a pair of charged kaons.

The result marks a milestone in CMS’s studies of CP violation. Thanks to AI, CMS has pushed the boundary of what its detector can achieve in the exploration of this fundamental matter–antimatter asymmetry.

Find out more on the CMS website.

abelchio Tue, 04/30/2024 - 08:54 Byline CMS collaboration Publication Date Tue, 04/30/2024 - 08:53

Alice Bucknell wins the second edition of the Collide Copenhagen residency award

Mon, 29/04/2024 - 14:49
Alice Bucknell wins the second edition of the Collide Copenhagen residency award

Following an international open call launched in collaboration with Copenhagen Contemporary in January, Arts at CERN announced today that the artist Alice Bucknell is the recipient of the second Collide Copenhagen residency award.

Established in 2012, Collide is Arts at CERN’s international residency award, where the residency is a unique opportunity for artists working in the crossovers between art, science and technology to immerse themselves in the vibrant environment of the Laboratory and engage in dialogue with CERN's scientific community.

Collide Copenhagen is a three-year collaboration framework between CERN and Copenhagen Contemporary. It supports artistic research into art, science and technology, with a residency taking place annually from 2023 to 2025. For this edition, Collide received 718 entries from 91 different countries.

Bucknell will embark on a two-month residency, split between CERN and Copenhagen Contemporary, to develop their proposal “Small Void”. Drawing inspiration from CERN’s particle physics research and the intricate ecosystems of Earth, the project seeks to explore the relationships between life and intelligence at the micro-scale through game worlds.

At CERN, Bucknell will work alongside scientists to explore artistically microscopic black holes – hypothetical entities with the potential to unlock new questions about physics and extra dimensions. Delving into how researchers envision the “micro” through scientific imaging, the artist will seek to imagine and transform these hypothetical objects within the game and incorporate visualisations inspired by CERN experiments.

In Copenhagen, the focus will shift to Earth-bound life forms. Inspired by the Assistens Cemetery’s lichen, Bucknell will explore these resilient ecosystems that exist outside a binary perception of life and aliveness. By integrating both elements as narrative agents, the game will aim to spark a dialogue about microcosmic intelligence and life.

With the support of the curatorial teams of Arts at CERN and Copenhagen Contemporary, a phase of designing and producing a new artwork will follow the residency. Together with the 2023 awardee, Dutch artist Joan Heemskerk, and the winner of next year’s edition, the three awardees of Collide Copenhagen will become part of an exhibition at Copenhagen Contemporary in 2025.

“I am thrilled to witness Collide’s continued success in attracting artists who brilliantly merge physics with key aspects of our contemporary culture. Alice Bucknell’s bold approach to science will undoubtedly inspire CERN scientists to delve into questions about the limits of knowledge and our understanding of the world. It’s also exciting to see how Collide strengthens the partnership between CERN and Copenhagen Contemporary as we enter the second year of our collaboration, fostering innovative art projects within our communities in Geneva and Copenhagen,” said Mónica Bello, Head of Arts at CERN.

“With a highly original perspective on the deep interweaving of technology and nature in contemporary culture, Alice Bucknell invites us to be insiders in a gameplay where nature, ecology and the environment are reimagined. At Copenhagen Contemporary we are beyond excited to take a deep dive through Bucknell’s speculative ecological lens and to continue our flourishing collaboration with Arts at CERN in this second edition of Collide Copenhagen,” said Marie Laurberg, Director of Copenhagen Contemporary.

About Arts at CERN  

About Copenhagen Contemporary 

About Alice Bucknell

Alice Bucknell is an artist with a particular interest in game engines and speculative fiction. Their recent work has focused on creating cinematic universes within game worlds, exploring the affective dimensions of video games as interfaces for understanding complex systems, relations and forms of knowledge.

About the jury

The jury consisted of Mónica Bello, Curator and Head of Arts at CERN; Marie Laurberg, Director of Copenhagen Contemporary; Ana Prendes, Assistant Curator of Arts at CERN; and Hannah Redler-Hawes, independent curator.

 

ldragu Mon, 04/29/2024 - 13:49 Publication Date Mon, 04/29/2024 - 14:00

Adding CERN to the shopping list

Fri, 26/04/2024 - 13:35
Adding CERN to the shopping list A CERN guide takes the phrase “hands-on activity” literally at the International Geneva exhibition in Balexert shopping centre (Image: CERN)

Busy shoppers put trolleys to one side to visit the CERN stand at the “Genève internationale” exhibition at Balexert, the largest shopping centre in Geneva, from 16 to 20 April.

Through practical activities and chats, CERN guides helped visitors to discover more about CERN’s research, while highlighting what our new visitor centre, CERN Science Gateway, has to offer.

“Thank you to all the CERN guides who joined the stand over the five days of the exhibition,” says François Briard, head of visitor and event operations. “Your enthusiasm was fantastic and contagious.”

Interested in becoming a CERN guide? Find out more here.

See more photos in the slideshow below:

katebrad Fri, 04/26/2024 - 12:35 Byline Kate Kahle Publication Date Thu, 05/02/2024 - 14:21

MoEDAL zeroes in on magnetic monopoles

Fri, 26/04/2024 - 11:45
MoEDAL zeroes in on magnetic monopoles The MoEDAL detector (Image: CERN)

The late physicist Joseph Polchinski once said the existence of magnetic monopoles is “one of the safest bets that one can make about physics not yet seen”. In its quest for these particles, which have a magnetic charge and are predicted by several theories that extend the Standard Model, the MoEDAL collaboration at the Large Hadron Collider (LHC) has not yet proven Polchinski right, but its latest findings mark a significant stride forward. The results, reported in two papers posted on the arXiv preprint server, considerably narrow the search window for these hypothetical particles.

At the LHC, pairs of magnetic monopoles could be produced in interactions between protons or heavy ions. In collisions between protons, they could be formed from a single virtual photon (the Drell–Yan mechanism) or the fusion of two virtual photons (the photon-fusion mechanism). Pairs of magnetic monopoles could also be produced from the vacuum in the enormous magnetic fields created in near-miss heavy-ion collisions, through a process called the Schwinger mechanism.

Since it started taking data in 2012, MoEDAL has achieved several firsts, including conducting the first searches at the LHC for magnetic monopoles produced via the photon-fusion mechanism and through the Schwinger mechanism. In the first of its latest studies, the MoEDAL collaboration sought monopoles and high-electric-charge objects (HECOs) produced via the Drell–Yan and photon-fusion mechanisms. The search was based on proton–proton collision data collected during Run 2 of the LHC, using the full MoEDAL detector for the first time.

The full detector comprises two main systems sensitive to magnetic monopoles, HECOs and other highly ionising hypothetical particles. The first can permanently register the tracks of magnetic monopoles and HECOs, with no background signals from Standard Model particles. These tracks are measured using optical scanning microscopes at INFN Bologna. The second system consists of roughly a tonne of trapping volumes designed to capture magnetic monopoles. These trapping volumes – which make MoEDAL the only collider experiment in the world that can definitively and directly identify the magnetic charge of magnetic monopoles – are scanned at ETH Zurich using a special type of magnetometer called a SQUID to look for any trapped monopoles they may contain.

In their latest scanning of the trapping volumes, the MoEDAL team found no magnetic monopoles or HECOs, but it set bounds on the mass and production rate of these particles for different values of particle spin, an intrinsic form of angular momentum. For magnetic monopoles, the mass bounds were set for magnetic charges from 1 to 10 times the fundamental unit of magnetic charge, the Dirac charge (gD), and the existence of monopoles with masses as high as about 3.9 trillion electronvolts (TeV) was excluded. For HECOs, the mass limits were established for electric charges from 5e to 350e, where e is the electron charge, and the existence of HECOs with masses ranging up to 3.4 TeV was ruled out.

“MoEDAL’s search reach for both monopoles and HECOs allows the collaboration to survey a huge swathe of the theoretical ‘discovery space’ for these hypothetical particles,” says MoEDAL spokesperson James Pinfold.

In its second latest study, the MoEDAL team concentrated on the search for monopoles produced via the Schwinger mechanism in heavy-ion collision data taken during Run 1 of the LHC. In a unique endeavour, it scanned a decommissioned section of the CMS experiment beam pipe, instead of the MoEDAL detector’s trapping volumes, in search of trapped monopoles. Once again, the team found no monopoles, but it set the strongest-to-date mass limits on Schwinger monopoles with a charge between 2gD and 45gD, ruling out the existence of monopoles with masses of up to 80 GeV.

“The vital importance of the Schwinger mechanism is that the production of composite monopoles is not suppressed compared to that of elementary ones, as is the case with the Drell–Yan and photon-fusion processes,” explains Pinfold. “Thus, if monopoles are composite particles, this and our previous Schwinger-monopole search may have been the first-ever chances to observe them.”

The MoEDAL detector will soon be joined by the MoEDAL Apparatus for Penetrating Particles, MAPP for short, which will allow the experiment to cast an even broader net in the search for new particles.

abelchio Fri, 04/26/2024 - 10:45 Byline Ana Lopes Publication Date Fri, 04/26/2024 - 10:24

Capturing CERN’s diverse community

Thu, 25/04/2024 - 13:00
Capturing CERN’s diverse community Showcasing the diversity of jobs, nationalities and cultures within the CERN community, the photo includes representatives from ATS, BE, EN, EP, HSE, HR, IPT, IR, IT, PF, SY, TE and TH. (Image credit: Yann Arthus-Bertrand)


Members of the CERN community are now part of the project Les Français et Ceux qui vivent en France (The French and those who live in France) by renowned French photographer Yann Arthus-Bertrand.

Known for his book Earth from Above and his films Home and Human, Arthus-Bertrand has also been photographing the people of France for more than 30 years for his project The French and those who live in France. During a discussion with French demographer and historian Hervé Le Bras in 2023, he was prompted to enrich and complete this project. Throughout 2024, he is touring France to capture the diversity of the French population.

Arthus-Bertrand expressed an interest in photographing members of the CERN community residing in the Pays de Gex area of France, and the photoshoot took place on 8 March, during the Festival des Confrontations Photo 2024.

An internal call to the community resulted in more than 40 registrations in the first five minutes and 180 in total before registrations were closed. Participants were selected from among the first people to respond from each department.

“Yann was very kind”, says Zoe Nikolaidou who coordinated the collaboration. “He liked that we were wearing work clothes, including hardhats and hi-vis jackets, but he wasn’t so keen on us wearing our CERN access passes,” she laughs. “He didn’t find them very photogenic!”

The project will result in the publication of one or more books and a touring exhibition across France.

katebrad Thu, 04/25/2024 - 12:00 Byline Kate Kahle Publication Date Fri, 04/26/2024 - 17:19

Computer Security: Pay per vulnerability

Wed, 24/04/2024 - 13:15
Computer Security: Pay per vulnerability

Remember CERN’s WhiteHat Challenge, in which we gave people outside CERN permission to hack into the Organization as long as they abided by a short set of rules and in which CERN trained its own staff and users in penetration testing and vulnerability scanning? While our “Day of the open firewall” to ease the life of penetration testes was of course only an April Fool’s hoax, we are still and seriously aiming to bring vulnerability scanning and penetration testing to the next (professional) level…

Actually, vulnerabilities lurk everywhere. In the operating system of your desktop PC, laptop or smartphone; in the software programs you run; in the applications and code you develop; in the web pages, web frameworks and web servers you use. Critical for assessing the risk of each vulnerability is the exploitability: can an attacker gain direct benefit from that vulnerability for their evil deed? Which hurdles need to be overcome beforehand? In that sense, computing services directly connected or visible to the internet are the most risky, as each potential vulnerability can be directly exploited by attackers (who are legion on the internet). Hence, it is essential that this attack sphere – all servers with openings in CERN’s outer perimeter firewall towards the internet – is as protected as possible and all known vulnerabilities are eradicated. That’s why CERN created the WhiteHat Challenge giving computer science and IT security students as well as interested CERN staff and users the chance to hack into CERN.

Now, in order to be even more thorough and delve even deeper, in order to find more (sophisticated) vulnerabilities, and just in time for the 2024 spring clean, the Computer Security team decided to tap into a larger pool of professionals and engage with ethical hackers and launched a three (and a half) staged approach towards improving the security of CERN’s Internet presence and beyond. Subject to ground rules, code of ethics, and scoping, the hackers are permitted to penetrate into CERN’s infrastructure (as outlined in the contractual scope and ethically without causing any damage) in order to identify vulnerabilities and weaknesses:

  1. In this first stage, we aim at a broad vulnerability scanning by external professionals of the whole Internet presence of CERN (and by an eager internal student in parallel) in order to identify the “low hanging fruits” (if any) and get them fixed;
  2. Afterwards, during the second stage, an in-depth penetration testing of key and core services performed by ethical hackers shall verify that our protective means are solid and robust, and that more complex attack vectors yield into nothing;
  3. Once stages 1 and 2 are terminated, and all findings are mitigated, the Computer Security Team will team up with a larger group of ethical hackers through a so-called “Bug Bounty Program”, like HackerOne or BugBountySwitzerland.

While the costs for the first two stages are free of charge and covered by a flat budget provided by CERN’s Computer Security Team, the third one shall be “paid per vulnerability found” ─ the so-called “Bug Bounty” as outlined in the contract ─ by the owner of the corresponding vulnerable system. It is this Bounty which creates an incentive for an ethical hacker reporting first a finding as each finding supports their living: For example 100 CHF for identifying an easy cross-site scripting problem; 500 CHF for obtaining root access to a server; 1000 CHF for finding credentials that allow them to move laterally towards other internal services; 5000 CHF for compromising a service that allows them to configure other services (like Puppet, Git, LDAP or Active Directory).

However, that Bounty also creates an incentive for you! Like the shared responsibility for computer security at CERN, the Bug Bounty costs will also be shared, and shall be born by your (group’s or departmental) budget if you own, manage or run a computing resource, service, system, device or website that is found by an ethical Bug Bounty hacker to be vulnerable or weak, and if that finding is linked to negligence of general security standards (bad programming practices, unpatched systems, suboptimal handling of secrets and passwords, nit using CERN’s Single Sign-On etc.), … Time for incentive to get it right from the beginning! It’s up to you whether you are ready to pay any incurring costs of vulnerable resources found by an ethical hacker, or to invest a bit more in getting your system and service, your devices and websites up to general standards. The CERN Computer Security Team is happy to help you with this.

_________

Do you want to learn more about computer security incidents and issues at CERN? Follow our Monthly Report. For further information, questions or help, check our website or contact us at Computer.Security@cern.ch.

anschaef Wed, 04/24/2024 - 12:15 Byline Computer Security team Publication Date Wed, 04/24/2024 - 12:11

CERN's edge AI data analysis techniques used to detect marine plastic pollution

Mon, 22/04/2024 - 17:28
CERN's edge AI data analysis techniques used to detect marine plastic pollution

Earth Observation (EO) and particle physics research have more in common than you might think. In both environments, whether capturing fleeting particle collisions or detecting transient traces of ocean plastics, rapid and accurate data analysis is paramount.

On this Earth Day, as we reflect on our responsibility to reduce plastics for the benefit of our society and all life on our planet, we are excited to present a new EU project, Edge SpAIce. It applies CERN’s cutting-edge AI technology to monitor the Earth’s ecosystems from space in order to detect and track plastic pollution in our oceans.

“In particle physics, the trigger system plays a critical role by swiftly determining which data from the particle detector should be retained, given that only a small fraction of the 40 million collision snapshots taken each second can be recorded. As the data influx at the Large Hadron Collider (LHC) has grown significantly over the years, physicists and computer scientists are continually innovating to upgrade this process - and this is where AI technology comes in,” says Sioni Summers, a CERN physicist working on the CMS experiment at the LHC, who is supervising this work.

Edge SpAIce is a collaborative endeavour involving CERN, EnduroSat (BG) and NTU Athens (GR) and coordinated by AGENIUM Space. Its aim is to develop a specially designed on-board system for satellites that will make it possible to acquire and process high-resolution pictures using a DNN (Deep Neural Network). The system will use the “edge AI” approach, in which data is processed in near real-time directly on the satellite, mirroring the efficient filtering of LHC data in particle detectors at CERN. This means that it is not necessary to transmit all of the captured data back to Earth but only the relevant information - in this case, the presence of marine plastic litter. The system will also be deployed on FPGA hardware developed in Europe, which will improve competitiveness. This could open the door for a whole new market for EO services and applications.

As modern life increasingly relies on technology, the solution that the project offers adeptly addresses the growing demand for data processing and the rapid expansion of EO satellites. By eliminating the need for heavy processing in Earth-based data centres, it not only reduces the carbon footprint but also helps to relieve the burden on these facilities. The innovative approach holds potential for broader applications in domains such as agriculture, urban planning, disaster relief and climate change. Additionally, this technology will provide environmental scientists and policymakers with invaluable data for targeted clean-up operations. It will advance our understanding of plastic pollution patterns, thereby enhancing our capacity to address environmental challenges effectively.

“AGENIUM Space is thrilled to have found synergies with CERN in developing innovative solutions for our planet’s future,” said Dr Andis Dembovskis, a business development executive with AGENIUM Space.

The Edge SpAIce project exemplifies how creative thinking by partners across diverse fields can lead to a collaborative knowledge transfer project that tackles major societal challenges. To discover how other CERN knowledge transfer and innovation projects are making a positive impact on the environment, please visit: https://kt.cern/environment

ptraczyk Mon, 04/22/2024 - 16:28 Byline Marzena Lapka Publication Date Mon, 04/22/2024 - 16:23

SHiP lève l’ancre pour explorer le secteur caché

Thu, 18/04/2024 - 17:00
SHiP sets sail to explore the hidden sector

The SHiP (Search for Hidden Particles) collaboration was in high spirits at its annual meeting this week. Its project to develop a large detector and target to be installed in one of the underground caverns of the accelerator complex has been accepted by the CERN Research Board. Thus, SHiP plans to sail to explore the hidden sector in 2031. Scientists hope to capture particles that interact very feebly with ordinary matter – so feebly, in fact, that they have not yet been detected.

This group of hypothetical particles includes dark photons, axions and axion-like particles, heavy neutral leptons and others. These particles, which could be among the dark matter, particles, are predicted by several theoretical models that extend beyond the Standard Model, the current theory describing elementary particles and the forces that unite them.

Although very solid, the Standard Model does not explain certain phenomena. The particles predicted by the Model – in other words, the ordinary matter that we know – account for just 5% of the Universe. The rest is thought to be unknown matter and energy, which scientists refer to as dark matter and dark energy. Their effects can be observed in the Universe, but their nature is a mystery that a growing number of experiments are trying to uncover.

This is where SHiP comes in. The idea is simple: the more particles that are produced, the greater the chances of finding feebly interacting particles. A high-intensity proton beam from the Super Proton Synchrotron (SPS) accelerator will be repeatedly sent to a target, a large metal block, producing a vast number of particles. Among them, scientists hope to find particles from the hidden sector. Thanks to the very high beam intensity, SHiP will be more sensitive than the existing experiments.

Another special feature of SHiP is that its detectors will be placed several tens of metres away from the target in order to detect relatively long-lived particles and eliminate “background noise”, in other words, particles such as muons that could interfere with the detection of long-lived particles. The experiment is equipped with a magnet system to divert the flow of muons and a large 50 m-long chamber in which the particles of interest can decay into known particles.

The experiment therefore complements the large LHC experiments, whose detectors surround the collision point and are unable to study the feebly interacting particles that travel several tens of metres before transforming. Theoretical models predict that the lower their mass and the weaker their coupling (the intensity of the interaction), the longer the lifetime of these particles. SHiP will therefore be sensitive to particles with relatively low masses.

In their journey through the detector, these particles could either disintegrate into known particles or collide with an atom of ordinary matter, which would also produce particles. The SHiP detectors have been designed to detect their signals.

Beyond the hypothetical dark-matter particles, SHiP will also study neutrinos which, despite being known particles of the Standard Model, are difficult to intercept and still hold many mysteries.

The target and the experiment will be installed in an existing underground cavern at CERN and supplied by a beam line from the SPS, CERN’s second largest accelerator, which supplies several experiments and pre-accelerates particles for the LHC.

The target is a complex device that is more like a beam dump than a conventional fixed target. Under study for several years, it is a 1.5-metre-thick block made of several different metals in order to produce the specific particles required by SHiP and fitted with a cooling and shielding system.

Part of the SHiP collaboration during its annual meeting, which was held at CERN this week. (Image: Marina Cavazza/CERN)

 

cmenard Thu, 04/18/2024 - 16:35 Byline Corinne Pralavorio Publication Date Fri, 04/19/2024 - 14:05

ALICE gets the green light for new subdetectors

Thu, 18/04/2024 - 15:52
ALICE gets the green light for new subdetectors

Two detector upgrades of ALICE, the dedicated heavy-ion physics experiment at the Large Hadron Collider (LHC), have recently been approved for installation during the next long shutdown of the LHC, which will take place from 2026 to 2028. The first one is an upgrade of the innermost three layers of the Inner Tracking System (ITS3), and the second is a new forward calorimeter (FoCal), optimised for photon detection in the forward direction of the ALICE detector.

High-energy collisions of heavy ions like lead nuclei at the LHC recreate quark–gluon plasma: the hottest and densest fluid ever studied in a laboratory. Besides studying the properties of quark–gluon plasma, the ALICE programme covers a broad array of topics involving strong interaction, such as determining the structure of nuclei and the interactions between unstable particles, as presented in "A journey through the quark-gluon plasma and beyond".

Inner Tracking System (ITS3)

ALICE’s current Inner Tracking System, installed for the ongoing LHC run, is the world’s largest pixel detector to date, with 10 m2 of active silicon area and nearly 13 billion pixels. The new Inner Tracking System, ITS3, builds on the successful use of monolithic active pixel sensors and takes this concept to the next level.

“ALICE is like a high-resolution camera, capturing intricate details of particle interactions. ITS3 is all set to boost the pointing resolution of the tracks by a factor of 2 compared to the current ITS detector,” said Alex Kluge and Magnus Mager, the project leaders of ITS3. “This will strongly enhance the measurements of thermal radiation emitted by the quark–gluon plasma and provide insights into the interactions of charm and beauty quarks when they propagate through the plasma.”

The ITS3 sensors are 50 µm thick and as large as 26×10 cm2. To achieve this, a novel stitching technology was used to connect individual sensors together into a large structure. These sensors can now be bent around the beampipe in a truly cylindrical shape. The first layer will be placed only 2 mm from the beampipe and 19 mm from the interaction point. It can now be cooled by air instead of water and has a much lighter support structure, significantly reducing the materials and their effect on the particle trajectories seen in the detector.

 

Forward Calorimeter (FoCal)

The FoCal detector consists of an electromagnetic calorimeter (FoCal-E) and a hadronic calorimeter (FoCal-H). FoCal-E is a highly granular calorimeter composed of 18 layers of silicon pad sensors, each as small as 1×1 cm2, and two additional special layers with pixels of 30×30 μm2. FoCal-H is made of copper capillar tubes and scintillating fibres.

“By measuring inclusive photons and their correlations with neutral mesons, and the production of jets and charmonia, FoCal offers a unique possibility for a systematic exploration of QCD at small Bjorken-x. FoCal extends the scope of ALICE by adding new capabilities to explore the small-x parton structure of nucleons and nuclei,” said Constantin Loizides, project leader of FoCal at the ALICE collaboration.

The newly built FoCal prototypes have recently been tested with beams in the CERN accelerator complex, at the Proton Synchrotron and Super Proton Synchrotron, demonstrating their performance in line with expectations from detector simulations.

The ITS3 and FoCal projects have reached the important milestone of completing their Technical Design Reports, which were endorsed by the CERN review committees in March 2024. The construction phase of ITS3 and FoCal starts now, with the detectors due to be installed in early 2028 in order to be ready for data taking in 2029.

ckrishna Thu, 04/18/2024 - 14:52 Byline ALICE collaboration Publication Date Thu, 04/25/2024 - 10:00

Blazing trails: CMS cavern evacuation paves the way for future safety design

Wed, 17/04/2024 - 00:45
Blazing trails: CMS cavern evacuation paves the way for future safety design

CERN strives for excellence in safety matters, with a commitment to continuous improvement in the field. Emergency preparedness is a priority for the Organization as it is a key element in its aim to protect both people participating in its activities and its installations. In this context, regular evacuation exercises of all accelerator and experimental areas are a regulatory requirement and part of the CERN-wide safety objectives.

On a warm, sunny day in February 2024, 48 people were going about their daily work in the CMS cavern, unaware that an evacuation exercise, which had been carefully planned for several months, was about to take place. Such exercises are crucial for facility users and rescue teams to gain familiarity with emergency procedures in various contexts and settings. When the alarm sounded, all 48 people reacted calmly, reaching the assembly point quickly and safely. It was a pleasing result for CMS and, apart from the important lessons learned from the exercise, additional data was gathered to improve not only evacuation procedures but also the design of installations in order to make emergency plans even more effective.

This exercise was part of a pilot collaboration between CMS Safety, the HSE Fire Safety Engineering (FSE) team and the Fire Safety Engineering division of Lund University in Sweden, which took this opportunity to maximise the usefulness of the evacuation to study human behaviour in emergency situations.

Comprising reports by undercover observers, questionnaires and footage from security cameras (used in full compliance with Operational Circular No. 11 to ensure anonymity), the data collected provides many useful insights into evacuation dynamics, occupant characteristics and perceptions of safety procedures.

This information is essential for the design of and emergency planning for subterranean experimental areas. As opposed to the design of buildings located above ground, which follows national safety standards, the design of underground areas relies extensively on computer modelling. Using various parameters, it is possible to simulate human behaviours in the event of an emergency to predict the effectiveness of a real-life evacuation.

In this pilot study, the Lund and FSE teams will use the CMS evacuation data to identify unique human behaviours observed in emergencies in complex underground environments. This will expand the current knowledge base and help build a database of specific input parameters to fine-tune and/or validate existing evacuation models.

Ultimately, this methodology will be instrumental not only to improve CERN’s emergency response in the caverns, but also to influence the safety design across current and future complex facilities, at CERN and beyond.

anschaef Tue, 04/16/2024 - 23:45 Byline CMS collaboration HSE unit Publication Date Wed, 04/17/2024 - 08:43

CERN donates computing equipment to South Africa

Wed, 17/04/2024 - 00:21
CERN donates computing equipment to South Africa

On 9 April 2024, a ceremony at CERN marked the donation of computing equipment to the Tshwane University of Technology in South Africa. The ceremony was attended by Mr. Curtis Singo, Political and Economic Counsellor at the South Africa Embassy in Bern, Joachim Mnich, CERN’s director for Research and Computing, and Bob Jones, deputy head of CERN’s IT department.

On this occasion, 21 servers and 4 network switches were sent to the Tshwane University of Technology, where the equipment will be used to support academic and research projects.

CERN regularly donates computing equipment that no longer meets its highly specific requirements but is still more than adequate for less demanding environments. To date, more than 2500 servers and 150 network switches have been donated by CERN to countries and international organisations, namely Algeria, Bulgaria, Ecuador, Egypt, Ghana, Mexico, Morocco, Nepal, Palestine, Pakistan, the Philippines, Senegal, Serbia, Jordan, Lebanon and now South Africa.

If you are a publicly funded research organisation, you can request computing equipment from CERN.

anschaef Tue, 04/16/2024 - 23:21 Byline Marina Banjac Publication Date Tue, 04/16/2024 - 23:20

Fabiola Gianotti receives the 2024 prize from the “Fondation pour Genève”

Wed, 17/04/2024 - 00:08
Fabiola Gianotti receives the 2024 prize from the “Fondation pour Genève” (Image: Fondation pour Genève)

The Fondation pour Genève will be presenting its 30th prize to Fabiola Gianotti, CERN Director-General, in recognition of her outstanding contribution to Geneva’s international reputation.

“I am extremely honoured to receive the Fondation pour Genève Prize. The development of science and technology, openness, collaboration across borders and the education of young people are fundamental values at CERN, which are also deeply rooted in international Geneva. The fact that these values, which are so dear to me, are being recognised is a particularly touching moment for me,” declared Fabiola Gianotti.

The award ceremony is open to everyone and will take place on Monday 13 May 2024 at 6.30 pm at the Victoria Hall in Geneva. To register, click here.

More information on the Fondation pour Genève website.

anschaef Tue, 04/16/2024 - 23:08 Publication Date Wed, 04/17/2024 - 10:05

Handover at the CERN Ombud’s Office

Tue, 16/04/2024 - 23:37
Handover at the CERN Ombud’s Office

The CERN Ombud’s Office was established in 2010 to provide the entire CERN community with support in resolving conflicts informally, in a consensual and impartial manner. Since then, several Ombuds have held the position, which is now firmly anchored at the Laboratory. On 1 May, Marie-Luce Falipou, the fifth CERN Ombud, will take up her duties. She takes over from Laure Esteveny, who has been in the role since April 2021 and is taking early retirement.

As they prepared for the handover, Laure and Marie-Luce agreed to answer the Bulletin team’s questions.

The Bulletin: Laure, what drove you to become Ombud?

Laure: I began my career as Ombud in 2021, after 35 years working in different departments of the Organization. I was attracted by the human side of the role, and I haven’t been disappointed. I’m extremely happy to have been able to serve out my career as CERN Ombud. It’s very rewarding to help people to overcome a conflict.

The Bulletin: What do you need to succeed in this role?

Laure: When they take up their duties, all new CERN Ombuds follow the training courses run by the International Ombuds Association (IAO) and also receive training in mediation. This is clearly essential, but the skills I acquired throughout my career at CERN have also been invaluable. You need to have good analytical skills and be very thorough to succeed in this role.

Pierre Gildemyn, my predecessor, also supported me a lot. He was always available to answer my questions and shared his own experience as Ombud with me. I, in turn, am available for Marie-Luce; I will be delighted to help her. I would also urge her to turn to the IAO for support and to all the professional ombud networks, especially that of the United Nations and Related International Organizations (UNARIO) – ombuds are very good at supporting each other.

The Bulletin: Have you encountered any difficulties?

Laure: The role of Ombud is very rewarding on the human level. If I had to name a difficulty, I would say that the isolation that inevitably comes with the role is not always easy to cope with. In addition, by definition, the Ombud is only exposed to problematic situations in which people are suffering – to the “Dark Side of the Force” – which can sometimes be a heavy burden.

The Bulletin: Marie-Luce, what brought you to this role?

Marie-Luce: I’ve known Pierre and Laure for a long time, and I’ve seen them thrive in the role of Ombud, for which they developed a real passion. It’s a privilege to be the next to take on this role.

I’ve spent my whole career at CERN, 35 years now, in the Human Resources department. I’ve held various positions, notably HRA (human resources adviser) for 13 years, so I’m very familiar with the workplace culture. I’ve also been trained in active listening – skills that will certainly be very useful in my new position. For me, becoming Ombud is really a natural evolution, even if the role is of course unique.

The Bulletin: You take up your duties on 1 May, but you don’t become Ombud overnight, I imagine?

Marie-Luce: Indeed, I’ll take the necessary time to prepare myself for this new role, which is really something out of the ordinary and something with which I need to familiarise myself. I’m aware of the importance and the impact that the Ombud can have, and I’m humbled and grateful to accept this responsibility.

Le Bulletin: As the new Ombud, what message would you like to send to the CERN community?

Marie-Luce: I want people to know that the Ombud’s office is a safe, calm place where they will be listened to in confidence and understood. The Ombud is there to serve all members of the CERN community, regardless of their role in the Organization. Questions, problems and conflicts are part and parcel of life, including in the workplace. Finding the best way to handle them can make a big difference, and that’s where the Ombud can help.

The Bulletin: Any final words?

Marie-Luce: I’d like to say a big thank you to Laure for sharing her experience with me and for offering me her support; it’s a precious resource to have someone experienced to turn to.

Laure: Thank you to all those who placed their trust in me, and I wish Marie-Luce all the best!

The Bulletin: A big thank you to you both!

_____

The Ombud is available from Monday to Friday in office B500/1-004 on the Meyrin site. To make an appointment, in person or online, contact the Ombud at ombuds@cern.ch.

More information can be found on the Ombud’s website: https://ombuds.web.cern.ch

anschaef Tue, 04/16/2024 - 22:37 Byline Internal Communication Publication Date Tue, 04/16/2024 - 22:31

Accelerator Report: The LHC is well ahead of schedule

Tue, 16/04/2024 - 23:27
Accelerator Report: The LHC is well ahead of schedule

Almost the whole accelerator complex is now in “physics mode”, routinely delivering the various types of beam to the different physics facilities and experiments. Notably, the intensity ramp-up in the LHC is progressing remarkably well.

In particular, I am happy to start this report with the good news that, thanks to the excellent availability of the accelerator complex and the hard work of the LHC teams and experts, the LHC is now 12 days ahead of schedule, yielding a direct gain of integrated luminosity and thus physics and boding well for the 2024 run.

The first stable beams of 2024 in the LHC were initially scheduled for 8 April, but the teams working on the LHC beam commissioning managed to be ready earlier and declared first stable beams at 18.25 on 5 April, three days ahead of the official schedule. The first stable beams also mark the start of a period of intensity ramp-up interleaved with the completion of the final commissioning steps.

These final steps include the scrubbing of the LHC vacuum chamber to reduce the production of electron clouds that negatively impact the beam quality and put a strain on the cryogenics system. Usually, the scrubbing lasts two days, but this year an extra day was added since a new injection kicker and two TDIS (target dump injection systems) were installed during the YETS (the new TDIS replace the ones at Points 2 and 8 that suffered vacuum leaks in 2023). The scrubbing run was nevertheless completed in only 36 hours, resulting in another gain in the schedule.

The LHC availability during the recent intensity ramp-up was 85%, including stable beams for about 35% of the time, and the experts very efficiently signed off the checklists at each intensity step. This is why we are now about 12 days ahead of schedule, colliding beams of 1200 bunches and already producing a meaningful level of luminosity for physics. The next step is 1800 bunches, which, if all goes well, might be achieved before the end of this week.

On Tuesday, 16 April, at the end of the afternoon, the first 1.5 fb-1 of integrated luminosity was collected. More than 90 fb-1 are expected for 2024. (Image: CERN)

Meanwhile, the injectors are providing the experiment facilities with beams for physics. The PS was the first to routinely provide beams for physics to the East Area, on 22 March, and n_TOF followed suit on 25 March. ISOLDE, located behind the PS Booster, started physics on 8 April. The SPS fixed-target physics in the North Area started on 10 April. On 15 April, the AWAKE facility located behind the SPS started the first of five two-week proton runs scheduled for 2024. The next in line is the Antimatter factory: the AD and ELENA decelerators should start providing the experiments with antiprotons for physics on 22 April.

The 2024 run has been extended by four weeks, until 25 November, for the LHC, and by five weeks, until 2 December, for the injectors. The YETS will start later this year, which will allow more physics to be done in 2024.

anschaef Tue, 04/16/2024 - 22:27 Byline Rende Steerenberg Publication Date Tue, 04/16/2024 - 22:10

Mitigating the environmental impact of CERN procurement

Mon, 15/04/2024 - 17:39
Mitigating the environmental impact of CERN procurement

Every year, CERN spends some 500 MCHF on goods and services to build, maintain and operate its infrastructure to fulfil its scientific objectives. These purchases not only come at a financial cost, but also have an impact on the environment through the indirect emissions arising from their procurement. In 2023, CERN reported its procurement-related indirect emissions in the CERN Environment Report for the first time. These amounted to 98 030 tCO2e and 104 974 tCO2e in 2021 and 2022 respectively. To put this in context, this represents more than 90% of CERN’s total indirect emissions, the rest being attributed to personnel mobility, duty travel and catering, and just over 30% of CERN’s total emissions.

CERN strives to be a model for environmentally responsible research by taking action on its most impactful domains, including energy and water consumption and emissions, and setting objectives to minimise its environmental footprint. Adopting measures to positively influence procurement-related emissions is a priority for which a comprehensive strategy has been set out that will commit CERN, its suppliers and each and every one of us to making conscious decisions when purchasing goods or services.

Underpinning this strategy, the Environmentally Responsible Procurement Policy was approved by the Enlarged Directorate in June 2023. Anchored in the principle of embedding environmental responsibility where appropriate throughout all phases of the procurement process, the Policy commits the Organization to environmentally responsible procurement and to achieving sustainable results both internally and throughout its supply chains, integrating relevant best practices in its processes, measuring their impact, and communicating with and raising the awareness of all stakeholders.

In December 2023, the Enlarged Directorate approved the implementation of the Policy, effective from 1 January 2024. This entails a one-year kick-off phase to identify suitable areas for policy implementation, including a comprehensive awareness-raising programme with tailored training for technical officers and workshops for the departments focusing on their purchasing activities.

Additionally, pilot projects will help evaluate the integration of environmental criteria into market surveys and invitations to tender. Procurement officers will have access to a supplier sustainability due diligence tool and guidelines outlining best practices. These resources will equip them with the knowledge they need to assess suppliers based on their sustainability efforts.

Furthermore, a supplier engagement programme will be launched in order to foster discussions on sustainability within our supply chains, aiming to collaborate with and encourage suppliers to adopt sustainable practices.

Overall, this comprehensive implementation plan is designed to ensure a smooth transition towards policy compliance and create a sustainable framework for all stakeholders involved. Successful implementation will depend on all actors in CERN’s supply chains challenging our choices and decisions, from CERN’s IPT department, to CERN personnel involved in purchasing, to the suppliers themselves spanning our 23 Member and 11 Associate Member States, while continuing to strive for balanced returns.

According to Chris Hartley, Head of the IPT Department: “It is of great importance that we have established an Environmentally Responsible Procurement Policy for CERN. All CERN stakeholders want to see CERN continue to minimise its environmental impact. This Policy, underpinned by our progressive commitment to responsible sourcing, waste reduction and supplier engagement, will contribute to a more sustainable future.”

ndinmore Mon, 04/15/2024 - 16:39 Byline IPT department Publication Date Mon, 04/15/2024 - 16:35

ProtoDUNE’s argon filling underway

Fri, 12/04/2024 - 11:15
ProtoDUNE’s argon filling underway

CERN’s Neutrino Platform houses a prototype of the Deep Underground Neutrino Experiment (DUNE) known as ProtoDUNE, which is designed to test and validate the technologies that will be applied to the construction of the DUNE experiment in the United States.

Recently, ProtoDUNE has entered a pivotal stage: the filling of one of its two particle detectors with liquid argon. Filling such a detector takes almost two months, as the chamber is gigantic – almost the size of a three-storey building. ProtoDUNE’s second detector will be filled in the autumn.

ProtoDUNE will use the proton beam from the Super Proton Synchrotron to test the detecting of charged particles. This argon-filled detector will be crucial to test the detector response for the next era of neutrino research. Liquid argon is used in DUNE due to its inert nature, which provides a clean environment for precise measurements. When a neutrino interacts with argon, it produces charged particles that ionise the atoms, allowing scientists to detect and study neutrino interactions. Additionally, liquid argon's density and high scintillation light yield enhance the detection of these interactions, making it an ideal medium for neutrino experiments.

Interestingly, the interior of the partially filled detector now appears green instead of its usual golden colour. This is because when the regular LED light is reflected inside the metal cryostat, the light travels through the liquid argon and the wavelength of the photons is shifted, producing a visible green effect.

The DUNE far detector, which will be roughly 20 times bigger than protoDUNE, is being built in the United States. DUNE will send a beam of neutrinos from Fermi National Accelerator Laboratory (Fermilab) near Chicago, Illinois, over a distance of more than 1300 kilometres through the Earth to neutrino detectors located 1.5 km underground at the Sanford Underground Research Facility (SURF) in Sanford, South Dakota.

Watch a short time-lapse video of protoDUNE being filled with liquid argon:

ckrishna Fri, 04/12/2024 - 10:15 Byline Chetna Krishna Publication Date Fri, 04/12/2024 - 10:30

The next-generation triggers for CERN detectors

Thu, 11/04/2024 - 12:45
The next-generation triggers for CERN detectors

The experiments at the Large Hadron Collider (LHC) require high-performance event-selection systems – known as “triggers” in particle physics – to filter the flow of data to manageable levels. The triggers pick events with distinguishing characteristics, such as interactions or collisions of particles recorded in particle detectors, and make them available for physics analyses. In just a few seconds, the complex system can determine whether the information about a given collision event is worth keeping or not. 

The ATLAS and CMS experiments use triggers on two levels. The first trigger runs in sync with the rate of particle bunches colliding in the detectors, deciding in less than 10 microseconds which data to keep. Events that pass the first-level trigger move on to the second high-level trigger for further selection. The selected events are then sent to the CERN Data Centre, where the data is copied, stored and eventually made available to scientists around the world for data analysis.  

In preparation for the High-Luminosity LHC (HL-LHC), the ATLAS and CMS detectors are being upgraded with finer spatial and timing granularity, which will result in more data for each collision. The principle is the same as taking a picture with a camera with more pixels: the resulting file will be bigger because the image contains more detail, and the picture will be of higher quality. To prepare for the data deluge expected when the LHC enters the high-luminosity era, scientists need to develop new strategies for more sophisticated event processing and selection.

The key objective of the five-year Next-Generation Triggers (NextGen) project is to get more physics information out of the HL-LHC data. The hope is to uncover as-yet-unseen phenomena by more efficiently selecting interesting physics events while rejecting background noise. Scientists will make use of neural network optimisation, quantum-inspired algorithms, high-performance computing and field-programmable gate array (FPGA) techniques to improve the theoretical modelling and optimise their tools in the search for ultra-rare events.

The foundations of the NextGen project were laid in 2022 when a group of private donors, including former Google CEO Eric Schmidt, visited CERN. This first inspiring visit eventually evolved into an agreement with the Eric and Wendy Schmidt Fund for Strategic Innovation, approved by the CERN Council in October 2023, to fund a project that would pave the way for the future trigger systems at the HL-LHC and beyond: NextGen was born.

NextGen will collaborate with experts in academia and industry. The work builds on the open-science and knowledge-sharing principles embedded in CERN's institutional governance and modus operandi. The project includes a work package dedicated to education and outreach, a unique multi-disciplinary training programme for NextGen researchers and targeted events and conferences for the wider community of scientists interested in the field. The intellectual property generated as part of the NextGen Triggers project, owned by CERN, will be released and shared under open licences in compliance with the CERN Open Science Policy.

The NextGen Triggers project will mark a new chapter in in high-energy physics, leveraging upgraded event-selection systems and data-processing techniques to unlock a realm of discoveries.  

ckrishna Thu, 04/11/2024 - 11:45 Byline Antonella Del Rosso Publication Date Thu, 04/11/2024 - 12:00